The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

نویسندگان

  • Bing-Fei Wu
  • Li-Shan Ma
  • Jau-Woei Perng
چکیده

This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur’e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method. key words: steady state error, parametric absolute stability, fuzzy logic control system, Lur’e system, Popov criterion, robust

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Absolute Stability of Lur’e Systems

The concept of parametric stability is extended to include Lur’e-type nonlinear control systems with uncertain parameters and constant reference inputs. Conditions for parametric absolute stability are derived, which guarantee that the system remains stable despite uncertainty of equilibrium location caused by parametric uncertainties and values of the reference input. The conditions can be tes...

متن کامل

Designing fuzzy-sliding mode controller with adaptive sliding surface for vector control of induction motors considering structured and non-structured uncertainties

Induction motors with nonlinear dynamics are superior in terms of size, weight, motor inertia, maximum speed, efficiency, and cost than direct current machines, and hence their control is of great important. The main objective of this paper is to design a fuzzy sliding mode controller in order to control the position of the induction motor including parametric and non-parametric uncertainties b...

متن کامل

Analysis of Speed Control in DC Motor Drive Based on Model Reference Adaptive Control

This paper presents fuzzy and conventional performance of model reference adaptive control(MRAC) to control a DC drive. The aims of this work are achieving better match of motor speed with reference speed, decrease of noises under load changes and disturbances, and increase of system stability. The operation of nonadaptive control and the model reference of fuzzy and conventional adaptive contr...

متن کامل

Observer-based Adaptive Fuzzy Sliding Mode Control for MEMS Angular Rate Sensor

This paper presents a control strategy for micro-electro-mechanical systems (MEMS) z-axis gyroscope, based on the coupling of the fuzzy logic control with the so-called sliding mode control (SMC) approach and sliding mode observer. An adaptive model reference state tracking controller which can estimate the angular velocity vector, and the damping and stiffness model coefficients in real-time i...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 92-A  شماره 

صفحات  -

تاریخ انتشار 2009